Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Nutr Biochem ; 127: 109602, 2024 May.
Article in English | MEDLINE | ID: mdl-38373509

ABSTRACT

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulins , Rats , Male , Animals , Rats, Wistar , Cholecalciferol/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Vitamins , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism
2.
Exp Parasitol ; 249: 108520, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37001581

ABSTRACT

Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.


Subject(s)
Chagas Disease , Nanocapsules , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Female , Parasitemia/drug therapy , Parasitemia/parasitology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use
3.
Animals (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36496770

ABSTRACT

This study aimed to determine whether adding a blend based on zinc chloride and lignans from magnolia to the diet of broilers could replace conventional performance enhancers. For this study, 360 chickens were divided into four groups, with six repetitions per group (n = 15), as follows: CN, without promoter; GPC, control, 50 mg/kg of enramycin growth promoter; T-50, additive blend at a dose of 50 g/ton; and T-100, additive blend at a dose of 100 g/ton. Chickens fed with the additive blend at 50 g/ton showed a production efficiency index equal to that in the GPC group (p < 0.05). At 42 days, the lowest total bacterial count (TBC) was found in the T-100 group, followed by that in the GPC group (p < 0.001). For E. coli, the lowest count was observed in the T-100 group, followed by that in the CP and T-50 groups (p < 0.001). Higher villus/crypt ratios were observed in birds belonging to the T-100 and T-50 groups than in the GPC and NC groups (p < 0.001). Greater water retention was found in the T-50 group than in NC and T-100 groups (p < 0.048). The lowest water loss during cooking was also noted in the T-50 group (p < 0.033). We concluded that adding the antimicrobial blend, primarily at 50 g/ton, maintains the efficiency of the index of production and improves the intestinal health and meat quality of the birds.

4.
Exp Parasitol ; 240: 108337, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35850276

ABSTRACT

Infection is one of the main complications that hinder wound healing. Currently, antibiotic-resistant bacteria, such as Methicilin-resistant Staphylococcus aureus (MRSA), are a concern worldwide for both humans and animals. Maggot therapy is re-emerging as an alternative to intractable wounds and may be an option to the traditional antibiotic treatment. Although the species of choice is Lucilia sericata, reports of clinical use have led us to evaluate the efficacy and safety of using Lucilia cuprina larvae on induced infected wounds in Wistar rats. In short, 32 male Wistar rats were divided into 4 groups: Group I - saline solution treated; Group II - antibiotic-treated; Group III - treated with larval debridement, and Group IV - without wound and treatment. Skin wounds were induced in groups I, II and III. All treatments were performed once and held for 48 h. Clinical, microbiological, histopathological, hematological, and biochemical analyses were done. Significant wound area contraction was found (>95%) in group III on day 9 compared to day 15 in group II. Complete elimination (0.0 ± 0.0 CFU/mL) of bioburden was achieved after the second treatment (day 6) in both the II and III groups, compared to an increase in Group I (6.51 ± 0.37 CFU/mL). A cleaner wound was also observed in the histopathological evaluation of group III, with adequate collagen formation and re-epithelialization on day 15. Furthermore, larvae increased blood platelet levels after the first treatment. L. cuprina larvae have proven safe and effective in accelerating wound treatment and eliminating MRSA.


Subject(s)
Diptera , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/therapeutic use , Calliphoridae , Debridement , Humans , Larva , Male , Rats , Rats, Wistar
5.
An Acad Bras Cienc ; 93(suppl 4): e20210687, 2021.
Article in English | MEDLINE | ID: mdl-34909829

ABSTRACT

The objective of this study was to evaluate whether the addition of a blend based on α-monolaurin mono-, di- and triglycerides of butyric acid, and lysolecithin on the performance even on diets containing reduced inclusion of oil in the diet and without the use of growth-promoting antibiotics of broilers considering the effect on health, performance, and meat. Three treatments were defined: positive control (TP: with enramycin), negative control (TN: no enramycin), and blend (T-FRA: with monolaurin and glycerides of acid butyric minus 0.8% soybean oil). At 21 days, broilers treated with TP and T-FRA obtained the lower feed conversion ratio (FC); at 35 days, T-FRA broilers obtained lower FC than TN broilers. Cholesterol levels were higher in the blood of T-FRA broilers. On day 42, levels of ROS and TBARS were lower in the intestine, muscles, and liver of T-FRA broilers. Moreover, glutathione S-transferase and total non-enzymatic antioxidants were greater at the intestinal and muscular levels. The T-FRA broilers had a lower percentage of lipids in the meat. The MIC indicated that 111mg of the blend/mL inhibited the growth of E. coli; however, the counts of total coliforms and E. coli in the feces and the broilers' litter did not differ between treatments. In conclusion, the addition of the blend T-FRA in broiler diets was able to improve the feed conversion and maintain the other performance parameters even considering a reduction of 0.8% in the inclusion of oil.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Animal Feed/analysis , Animals , Butyric Acid , Diet , Dietary Supplements , Escherichia coli , Glycerides , Intestines , Laurates , Meat/analysis , Monoglycerides
6.
Trop Anim Health Prod ; 53(4): 442, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34410508

ABSTRACT

The aim of this study was to determine whether the inclusion of silymarin in broiler feed was able to mitigate the adverse effects of mycotoxin on growth performance, health status, liver oxidative stress, and meat fatty acid profiles. A completely randomized design with four treatments, four repetitions, and 15 chicks per repetition was used, with the following groups: (a) feed without additives (NoMyc-NoSil), (b) feed supplemented with silymarin (NoMyc-Sil), (c) feed contaminated with mycotoxin (Myc-NoSil), and (d) feed contaminated with mycotoxin and supplemented with silymarin (Myc-Sil). Growth performance, intestinal and liver health, and meat quality were assessed. The consumption of feed contaminated with mycotoxin delayed weight gain and increased the feed conversion ratio; however, the addition of silymarin prevented these adverse effects on the chicken industry. Serum ALT activity was higher in Myc-NoSil broilers than in other groups. Intake of silymarin in healthy birds increased serum globulin concentration and reduced albumin concentration and ALT and AST serum activities compared to the Myc-NoSil group. The NoMyc-Sil birds had greater villus heights and crypt depths. Luminosity and water loss by cooking were affected by mycotoxin ingestion, changes that did not occur in the meat of birds that were supplemented with silymarin. The sum of saturated and monounsaturated fatty acids in the meat did not change among treatments, unlike the sum of polyunsaturated fatty acids higher in the meat of birds that consumed silymarin. We conclude that silymarin is a potential additive in broiler feed; it reduces impairment of growth performance at the end of the productive cycle, prevents oxidative stress, improves meat quality, and increases polyunsaturated fatty acids.


Subject(s)
Mycotoxins , Silymarin , Animal Feed/analysis , Animals , Antioxidants , Chickens , Diet/veterinary , Dietary Supplements , Fatty Acids , Meat/analysis
7.
Res Vet Sci ; 139: 112-120, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34280655

ABSTRACT

The objective of this study was to determine whether the addition of grape residue flour (GRF) in the diet of suckling lambs would improve their health and consequently enhance their growth. We used 48 lambs, 30 days of age divided into four treatments with four repetitions each, with each repetition consisting of three animals. The groups were identified as follows: G-0%, used as a control (without GRF) and G-0.5%, G-1% and G-2% referring to treatment with grape residue flour in doses of 0.5%, 1%, and 2% of inclusion in the concentrate, respectively. Lambs in groups G-1% and G-2% had higher final body weights, weight gain and average daily gain (ADG) compared to the other groups. GRF dietary supplementation had good antioxidant potential, being able to stimulate glutathione S-transferase (GST) activity and consequently reduce levels of reactive oxygen species (ROS) in lambs that consumed the highest dose of GRF (G-2%). GRF supplementation improved humoral responses, with increased serum levels of heavy-chain and light-chain immunoglobulins; however, there was a reduction in serum ceruloplasmin levels in these lambs. We observed higher concentrations of glucose and triglycerides in lambs in the 2% group. There were lower lymphocyte counts in lambs that received GRF. Lambs supplemented with the highest doses of GRF (G-1% and G-2%) had lower total bacterial counts in the feces. We conclude that the use of GRF in the supplementation of suckling lambs improved animal health, as it stimulated the antioxidant and immune systems and consequently favored their growth.


Subject(s)
Antioxidants , Dietary Supplements , Vitis , Animal Feed/analysis , Animals , Diet/veterinary , Flour , Metabolome , Sheep , Sheep, Domestic , Weight Gain
8.
Purinergic Signal ; 17(3): 493-502, 2021 09.
Article in English | MEDLINE | ID: mdl-34302569

ABSTRACT

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.


Subject(s)
Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Chagas Disease/metabolism , Nitroimidazoles/administration & dosage , Receptors, Purinergic/biosynthesis , Resveratrol/administration & dosage , Acute Disease , Animals , Antioxidants/administration & dosage , Cerebral Cortex/parasitology , Chagas Disease/drug therapy , Female , Gene Expression , Immunosuppressive Agents/administration & dosage , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Receptors, Purinergic/genetics
9.
Microb Pathog ; 153: 104800, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33609651

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, infecting the heart, intestines and liver tissues. There is growing evidence that oxidative stress, defined as a persistent imbalance between highly oxidative compounds and antioxidant defenses, is a marker of tissue inflammation; it is related to immune responses such as damage, as well as to strand breaks in DNA contributing to disease progression. Antioxidant agents help mitigate the damage caused by inflammation, preventing or slowing damage to cells caused by free radicals. In this sense, resveratrol (RSV) is an important polyphenol that demonstrates antioxidant effects. It reverses damage caused by several infectious diseases. The aim of the present study was to determine whether treatment with RSV would prevent or minimize oxidative damage caused by T. cruzi. The animals were divided into four groups (n = 5): A) control; B) control + RSV; C) infected and D) infected + RSV. The infected groups received 1 x 104 Y strain trypomastigotes via intraperitoneal injection; after confirmation of infection, the mice received RSV 100 mg/kg for seven days orally. On the 8th day post-infection, we collected liver tissue for analysis of oxidant/antioxidant status: superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST) activities, as well as reactive oxygen species (ROS), non-protein thiols (NPSH), thiols, carbonyl protein, thiobarbituric acid reactive substance (TBARS), and finally, the nitrite/nitrate ratio (NOx) levels were determined. The administration of RSV did not exert direct effect on parasitemia. The infection produced high levels of TBARS, NOx, and ROS levels in liver tissue, suggesting cellular injury with production of free radicals in animals infected by T. cruzi. RSV positively modulated SOD and aumenting GST activities enzymes in infected animals. Protein thiols levels in infected animals were lower than those of control. Taken together, the data suggest T. cruzi causes hepatic oxidative stress, and RSV 100 mg/kg for seven days it's dosen't seem minimized these negative effects in the acute phase of disease.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Antioxidants , Catalase/metabolism , Chagas Disease/drug therapy , Liver/metabolism , Mice , Oxidative Stress , Resveratrol , Superoxide Dismutase/metabolism
10.
Microb Pathog ; 148: 104496, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32910982

ABSTRACT

The aim of this study was to determine whether the addition of curcumin (free and encapsulated) to chick feed would minimize the negative effects on health and performance caused by daily intake of fumonisin. We used 50 birds, divided into five treatments: CP, basal diet with 600 mg/kg of fumonisin, with antibiotic and coccidiostatic agent; CU, 600 mg/kg of fumonisin and 50 mg/kg of curcumin; NC5, feed with 600 mg/kg of fumonisin and 5 mg of nano-curcumin/kg of feed; NC10, feed with 600 mg/kg of fumonisin and 10 mg of nano-curcumin/kg of feed; and CN, fumonisin-free diet, with antibiotic and coccidiostatic. We measured weights, weight gain, and serum biochemistry, as well as antioxidant and oxidant activities. Lower body weight and weight gain were observed in chicks that received feed with fumonisin; curcumin did not minimize this negative effect. Lower glucose and triglyceride levels were also observed in the NC10 group, while the highest cholesterol levels were observed in all groups of birds that consumed fumonisin compared to the CN group. Uric acid levels were significantly lower in CP than in CN. Levels of liver enzymes were higher in CP than in CN. The highest levels of thiobarbituric acid reactive substances were found in CP and CU, whereas ROS was higher in CU compared to CN. Superoxide dismutase activity was significantly lower in CP, while glutathione S-transferase activity was higher in the CP group. Catalase activity was lower in groups of birds that consumed fumonisin compared to CN. Taken together, these findings suggest that intake of curcumin-loaded nanocapsules (10 mg/kg) had hepaprotective and antioxidant effects in chicks artificially intoxicated with fumonisin, minimizing the negative effects caused by this mycotoxin.


Subject(s)
Curcumin , Fumonisins , Fusarium , Nanocapsules , Animal Feed/analysis , Animals , Chickens , Curcumin/metabolism , Curcumin/pharmacology , Fumonisins/toxicity , Liver/metabolism , Oxidative Stress
11.
Parasitol Res ; 119(9): 2897-2905, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32677001

ABSTRACT

The central nervous system of the intermediate host plays a central role in lifelong persistence of Toxoplasma gondii as well as the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised individuals. The purinergic system has been implicated in a wide range of immunological pathways for controlling intracellular responses to pathogens, including T. gondii. In the present study, we investigated the effect of resveratrol (RSV) on ectonucleotidases, adenosine deaminase (ADA), and purinergic receptors during chronic infection by T. gondii. For this study, Swiss mice were divided into control (CTL), resveratrol (RSV), infected (INF), and INF+RSV groups. The animals were orally infected with the VEG strain and treated with RSV (100 mg/kg, orally). Ectonucleotidase activities, P2X7, P2Y1, A1, and A2A purinergic receptor density, ROS, and thiobarbituric acid reactive substances levels were measured in the cerebral cortex of mice. T. gondii infection increased NTPDase and reduced ADA activities. Treatment with RSV also affected enzymes hydrolysing extracellular nucleotides and nucleosides. Finally, RSV affected P1 and P2 purinergic receptor expression during T. gondii infection. Overall, RSV-mediated beneficial changes in purinergic signalling and oxidative stress, possibly improving cerebral cortex homeostasis in T. gondii infection.


Subject(s)
Cerebral Cortex/parasitology , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Resveratrol/pharmacology , Toxoplasmosis, Animal/drug therapy , Adenosine Deaminase/metabolism , Animals , Mice , Receptors, Purinergic/metabolism , Signal Transduction , Toxoplasma/immunology
12.
Microb Pathog ; 147: 104261, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32422333

ABSTRACT

Glycerol monolaurate (GML) is composed of lauric acid and glycerol. Research has shown that such organic acids can minimize negative effects caused by mycotoxins. Therefore, the objective of this study was to determine whether adding GML (free or encapsulated) to chick feed minimizes the effects of natural contamination by fumonisin (Fusarium verticillioides), evaluating parameters such as biochemistry, antioxidant properties, histological analysis and chick growth. Were weighed 84 chicks of the Cobb 500 strain and randomly distributed them into six groups of two replicates each (n = 14). The F group consumed feed containing fumonisin (levels 400 ppb), with no performance enhancer; F + ZB- feed with fumonisin (levels 400 ppb) + zinc bacitracin; F + GLM100 - feed with fumonisin (levels 400 ppb) + 100 mg of GML/kg of feed; F + NGLM4 - feed with fumonisin (levels 400 ppb) + 4 mg GML/kg in nanocapsules added to the feed; F + NGLM8 - fumonisin feed (levels 400 ppb) + 8 mg GML/kg in nanocapsules in the feed; and F0 - fumonisin-free feed (negative control) + zinc bacitracin. The body weights of birds fed with feed fumonisin-contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) were significantly lower (P < 0.05) than those of the negative control (F0), despite the use of GML (free and nanoencapsulated). Serum levels of triglycerides, globulins and cholesterol were significantly lower in the F0 group than in the other groups (P < 0.05), except for the F + NGLM8 group. Significantly greater levels of lipid peroxidation were observed in livers in the groups that consumed fumonisin than in the control group (F0) (P < 0.05). Serum levels of reactive oxygen species were significantly lower in groups F + NGLM8 and F0 than in the other treatments (P < 0.05). Superoxide dismutase activity was significantly greater in groups F + NGLM8 and F0 than in groups F, F + ZB and F + NGLM4. Hepatic catalase activity was significantly lower in birds that consumed contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) than in the control group (F0). Greater hepatic glutathione S-transferase activity was observed in the F + NGLM8 group than in the F0 group. Despite changes in cellular lesions in the liver, no histological changes were observed in the liver or intestines, even though visually there was yellowing of the liver. Taken together, the data suggest that free or nano-encapsulated GML did not minimize oxidative stress caused by fumonisin, and consequently, these birds had less weight gain.


Subject(s)
Fumonisins , Animal Feed/analysis , Animals , Chickens , Diet , Fumonisins/toxicity , Fusarium , Laurates , Liver , Monoglycerides
13.
Microb Pathog ; 136: 103703, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31476377

ABSTRACT

Trypanosoma evansi appears to have a significant tropism for brain tissue in its chronic and acute phases. The most common symptoms of this brain infection are motor incoordination, meningoencephalitis, demyelination, and anemia. There have only been few studies of the effects of T. evansi infection on neuronal differentiation and brain plasticity. Here, we investigated the impact of the congenital T. evansi infection on brain development in mice. We collected telencephalon-derived neural progenitor cells (NPCs) from T. evansi uninfected and infected mice, and cultivated them into neurospheres. We found that T. evansi significantly decreased the number of cells during development of neurospheres. Analysis of neurosphere differentiation revealed that T. evansi infection significantly increased neural migration. We also observed that T. evansi promoted expression of glial fibrillary acidic protein (GFAP) in infected cells. These data suggest that congenital T. evansi infection may affect embryonic brain development.


Subject(s)
Host-Pathogen Interactions , Neural Stem Cells/pathology , Neural Stem Cells/parasitology , Trypanosoma/growth & development , Animals , Cell Differentiation , Mice
14.
Microb Pathog ; 132: 156-161, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31029718

ABSTRACT

Chagas disease (CD) affecting about 7 million people is caused by the flagellate protozoan Trypanosoma cruzi. The central nervous system (CNS) is an important site for T. cruzi persistence in the host during the chronic phase of infection, because the protozoan may pass the blood-brain barrier and may cause motor and cognitive neuronal damage. Thinking about avoiding or minimizing these negative effects, it is hypothesized that resveratrol (RSV), a component with several medicinal properties has beneficial effects on the CNS. The objective of this study was to investigate, whether T. cruzi infection interferes with neurogenesis and gliogenesis of embryos of infected mice females, and whether RSV would be able to avoid or minimize these changes caused by CD. RSV is a polyphenol found in grapes and widely studied for its neuroprotective and antioxidant properties. In addition, we investigated the role caused by the parasite during congenital infection and CNS development. Embryos and their brains were PCR-positive for T. cruzi. For this study, NPCs obtained from telencephalon of infected and uninfected embryos and were cultured in presence of resveratrol for forming neurospheres. The results demonstrated that the congenital transmission of T. cruzi influences CNS formation and neural fate, decreasing the number of neuroespheres and causing an elongation in the phases of the cell cycle. In addition, the parasite promoted an increase in neugliogenesis. Resveratrol was neuroprotective and prevented negative effects of the infection. Thus, we suggest the use of resveratrol as a therapeutic target for the treatment of neuroinflammation or as neuroprotective agent during Chagas disease, as it improves gliogenesis and restores neural migration.


Subject(s)
Cell Differentiation/drug effects , Neurons/drug effects , Resveratrol/pharmacology , Stem Cells/drug effects , Animals , Chagas Disease/drug therapy , Disease Models, Animal , Female , Mice , Neurogenesis/drug effects , Neurons/cytology , Stem Cells/metabolism , Trypanosoma cruzi
15.
Parasitol Int ; 71: 11-17, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30849474

ABSTRACT

Both oxidative stress and alterations in adenosinergic and cholinergic systems participate in initiation and progression of parasitic infectious diseases. Nevertheless, the involvement of these pathways during eimeriosis remains poorly understood. Therefore, the aim of this study was to evaluate the involvement of adenosinergic and cholinergic systems in regulation of inflammatory response and oxidative stress in chicken chicks experimentally infected with Eimeria spp. Two groups were formed for comparison at 3 time points (days 5, 10 and 15) of infection (PI): uninfected (control) and infected. Erythrocyte counts, hematocrit and hemoglobin levels were lower in infected chicks on day 15 post-infection (PI). Total leukocytes, heterophil and lymphocyte counts were higher in infected chicks on days 5 and 10 PI, while eosinophil counts were higher only on day 10 PI. Serum levels of total protein and globulins were higher in infected chicks on days 10 and 15 PI, while triglycerides and cholesterol levels were lower on day 15 PI. Acetylcholinesterase activity in total blood and butyrylcholinesterase activity in serum were higher in infected chicks on day 15 PI, while adenosine deaminase activity was higher on day 10 PI and lower on day 15 PI compared with the respective control. Finally, serum levels of reactive oxygen species and catalase activity in total blood were higher in infected chicks on day 15 PI, while superoxide dismutase activity in total blood was lower at the same time of infection. These data suggest that cholinergic and adenosinergic systems display a pro-inflammatory profile that contributes to impairment of immune and inflammatory responses in a mixed Eimeria infection. Furthermore, oxidative stress may contribute to clinical signs of disease as well as to pathogenesis. In summary, the impairment of immune response and alterations in blood antioxidant/oxidant status contributes to disease pathophysiology.


Subject(s)
Acetylcholinesterase/blood , Adenosine Deaminase/blood , Butyrylcholinesterase/blood , Coccidiosis/veterinary , Eimeria , Oxidative Stress , Animals , Catalase/blood , Chickens/parasitology , Coccidiosis/physiopathology , Inflammation , Oocytes/physiology , Poultry Diseases/blood , Poultry Diseases/parasitology , Reactive Oxygen Species/blood
16.
Microb Pathog ; 125: 168-176, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30205193

ABSTRACT

The aim of this study was to evaluate whether a phytogenic feed additive (PFA) based on essential oils such as carvacrol, thymol and cinnamic aldehyde, could be considered a replacement for antimicrobials used as growth promoters in broiler chickens, as well as to investigate its effect on total bacterial count, biochemical profiles, meat quality and meat fatty acid profile. A total of 240 broiler chicks were randomly distributed into 4 groups with 4 replicates of 15 animals each, as follow: T1 (basal diet only; the control group), T2 (basal diet supplemented with zinc bacitracin), T3 (basal diet with 0.5% of the PFA), T4 (basal diet with 1.0% of the PFA). The addition of 0.5% of the PFA improved live body weight of supplemented birds compared to the control group at 35 and 42 days of age, while the total bacterial count in the environment was reduced when 1.0% of the PFA was used. In addition, intestinal villi height and crypt depth suffered variations during the entire experiment in birds treated with both concentrations of the PFA and zinc bacitracin. Total erythrocyte counts were higher on days 14, 28 and 42 in both treated groups (PFA) compared to the control group, as well as hemoglobin content on days 28 and 42. On the other hand, leukocyte counts were lower on days 14, 28 and 42 due to reduced lymphocyte counts in both PFA treated groups compared to the control group. Serum levels of alanine aminotransferase (ALT) were lower in broilers fed with either concentration of PFA on day 14 of life, and the same was observed regarding aspartate aminotransferase (AST) in broiler treated with 0.5% of the PFA. Also, total protein and globulin levels were lower on days 14 and 28 in groups fed with phytogenic compared to the control group. Regarding meat quality, breast meat showed higher red intensity and shear force in groups fed with both concentrations of phytogenic compared to the control group, while weight loss by cooking was lower. Finally, 1.0% of phytogenic showed lower docosadienoic acid (C22:2) content in breast meat. In conclusion, results showed that the use of PFAs based on carvacrol and thymol may be considered an interesting alternative to increase broilers performance, replacing the use of antimicrobials as growth promoters, as well as an interesting alternative to reduce the total bacterial count in the environment of broiler chickens. Moreover, the diet containing phytogenic also showed hepaprotective effects but deserves attention regarding possible alterations on the immune response.


Subject(s)
Acrolein/analogs & derivatives , Anti-Infective Agents/administration & dosage , Bacteria/isolation & purification , Body Weight , Food Additives/administration & dosage , Monoterpenes/administration & dosage , Thymol/administration & dosage , Acrolein/administration & dosage , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Bacteria/classification , Bacterial Load , Blood Chemical Analysis , Chickens , Cymenes , Environmental Microbiology
17.
Microb Pathog ; 113: 45-50, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29042305

ABSTRACT

The widespread use of antibiotics and anti-inflammatory has been more and more prominent. In spite of the proven pharmacological potential, its collateral effects are still being described. The fish oil is made of acids fatty polyunsaturated, as the omega 3. The aim of this paper is to check if there would be interference of this fish oil in the gut microbiota of rats when treated with dexamethasone and amoxicillin, joining with the parameter lipids and glycemic. This study was done with 42 Wistar rats, divided into 6 groups with 7 animals each: naive (CTL), amoxicillin (AMOX), dexamethasone (DEX), fish oil (OLP), associated amoxicillin and fish oil (AMOX + OLP) association dexamethasone and fish oil (DEX + OLP). The results show that the fish oil influenced in the concentration of blood glucose in the animals, keeping stable levels even after a pool of glucose. Differently, the fish oil increased the levels of LDL in the animals. The amoxicillin changed the mass of liver and spleen, changed the levels of triglyceride and changed the gut microbiota. The dexamethasone influenced the lipids parameters and mass of the spleen as well as it slightly increased the amount of cholesterol LDL. It is possible to conclude that fish oil increases the levels of LDL in the tested model and the dose tested, but is able to maintain glucose levels even after a pool of the same, and can be a preventive model with hyperglycemia.


Subject(s)
Amoxicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Bacteria/growth & development , Dexamethasone/pharmacology , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Blood Glucose/analysis , Cholesterol, LDL/blood , Glucose/metabolism , Hyperglycemia/prevention & control , Liver/physiology , Rats , Rats, Wistar , Spleen/physiology , Triglycerides/blood
18.
Exp Parasitol ; 176: 16-20, 2017 May.
Article in English | MEDLINE | ID: mdl-28242355

ABSTRACT

The enzymatic activities of NTPDase, 5'-nucleotidase and adenosine deaminase (ADA) are important in regulating the concentration of adenine nucleotides, molecules known to be involved on platelet aggregation. Fasciolosis causes coagulation disorders that have not been completely elucidated. Taking into consideration the association between the purinergic system and hemostasis, this study aimed to evaluate the enzymatic activities of NTPDase (hydrolyze ATP and ADP), 5'-nucleotidase (hydrolyze AMP) and ADA (deamination of adenosine) in platelets from cattle experimentally infected by Fasciola hepatica on days 20, 40, 60 and 80 post-infection (PI). For this study, 10 healthy Friesian steers were separated into two groups: the group A (n = 5) was used as uninfected control, and the group B was composed of steers experimentally infected by F. hepatica (n = 5). The number of platelets did not differ between groups in the periods evaluated. Reduction of NTPDase (p < 0.05) hydrolysing ATP (days 20, 40 and 60 PI), and ADP (days 40, 60 and 80 PI), and on 5'-nucleotidase hydrolyzing AMP (days 40 and 60 PI) was observed. A reduction (p < 0.05) in ADA activity on day 20 PI, as well as an increase (p < 0.05) in ADA activity on days 40 and 60 PI was observed when compared to the control. Based on these results, we can conclude that ATP, ADP and AMP hydrolysis and adenosine deamination were altered in platelets of cattle infected by F. hepatica. Considering the importance of the purinergic system in hemostasis, it is believed that those changes may contribute to the coagulation impairment observed in acute fasciolosis described in the literature.


Subject(s)
Adenosine Deaminase/blood , Blood Platelets/enzymology , Cattle Diseases/parasitology , Fascioliasis/veterinary , Nucleotidases/blood , Animals , Cattle , Cattle Diseases/blood , Cattle Diseases/enzymology , Fasciola hepatica/physiology , Fascioliasis/blood , Fascioliasis/enzymology , Feces/parasitology , Liver/parasitology , Liver/pathology , Male , Parasite Egg Count/veterinary , Platelet Count/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...